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Abstract

This thesis investigates a Curry-Howard correspondence between linear logic and a
type system for a typed synchronous π-calculus. We give a specification for a pro-
cess calculus and demonstrate how to reason about its concurrent programs. We
also provide an introduction to intuitionistic linear logic, a logic of resources, provid-
ing explanations and examples of its connectives. The session-typed process terms
and logical rules will be in one-to-one correspondence. This correspondence provides
information about programs written in our concurrent programming language.





Chapter 1

Introduction

1.1 Internet infrastructure and modern program-

ming languages

My friend messaged me the other day. He wanted to know if Haskell was a good
language to learn to make writing the network code he was working on easier. At the
time his work used a dialect of PHP called Hack which has a type system.

i like that when i’m developing in hack i can write code then run ”hh client”
(which does the type checking) and then eliminate like 90% of the bugs i
introduced in my code

and no side effects could theoretically make that even better

— Tim Bauman

In essence he was interested in saving himself time programming by allowing the type
checker to debug his code for him. To its proponents the functional style of program-
ming and the type system in Haskell provide a framework for code expression and
code checking that make certain code development less prone to error. Unfortunately
network application code is one of the “awkward squad” in Haskell (Jones, 2001)
— not easy to express — and its type system is not rich enough to provide certain
guarantees about its correctness.

Computing infrastructure is complex. The Cloud is made up of many compo-
nents which communicate with each other. We often view the way the components
are constructed as being made up of clients and servers, that is, we might identify
some component as providing a particular network service, the server, and another
component which use that service, its client. The server could be the Amazon web-
site and the notion of a client could be you as a user browsing on your phone, tablet
and laptop to construct your Amazon shopping cart. The client and server software
has typically been written in a C -like language, running on operating systems with
Unix -like components. Clients make TCP/IP connections to a server using a network
API (Application Programmers’ Interface) similar to Berkeley sockets. A socket con-
nection allows for the back and forth communication of information between two
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programs running on the same or different computers. Normally, in order to handle
numerous client requests, the server is multithreaded using an API similar to POSIX
threads. These threads run concurrently, and are constructed as independently exe-
cuting processing agents, even on a computer with a single processor.

Today’s software systems are distributed amongst many computers and, within
any computer, run as a system of concurrent processes.

Furthermore code itself is organized into these components. Software may link
several components in a single piece of code. A server may actually offer up HTTP
files using a templating API which accesses a database back-end using another API.

Building robust distributed systems made up of numerous components is noto-
riously difficult. Concurrent programming is prone to being buggy. Because there
could be simultaneous access to shared data or services there may be race conditions
and there could be deadlock. These kinds of bugs don’t always manifest themselves,
making them hard to reproduce and difficult to pin down. Engineers like my friend
Tim would like some assurance that the code he is writing is correct and that the
system specification is safe.

Software firms have testing departments whose sole job consists of writing code to
test the code developers are working on. Some modern programming systems have
facilities that make testing easier and also allow for the handling of errors as they
arise. Programmers follow careful disciplines to prevent shipping faulty code, for
example writing tests for code even before they have written the code itself.

One way to gain some assurances is to augment a programming system to include
components for formal specification and verification of code. Some researchers con-
sider mechanisms for checking aspects of developed software. A simple example is
compiler technology which checks for type safety and correctness of its programs.

Design of new programming languages is often driven by these concerns. This
has led to a proliferation of programming languages each one addressing some as-
pect of code development. Today there are a number of internet languages such
as GoLang, Javascript, Clojure, Java, Ruby and Python (whose influence relation-
ship is depicted in figure 1.2). Some of these languages even address concurrency
issues by defining useful “concurrency primitives”. Figure 1.2 lays out some of the
programming languages and programming language models used for the internet in-
frastructure and mentioned in this thesis. Many of the languages share features
including how programmers define functions, objects, and express concurrency and
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Figure 1.2: Programming Languages of this thesis with an influence relationship
from Wikipedia (2014)

networking. The arrows illustrate their influence relationship as per their Wikipedia
page entries. Some have concurrency primitives such as channels/processes, thread-
ing, or actors/messaging built into the language itself while most have support for
concurrency in popular libraries for the language.

1.2 Functional programming languages

In another spectrum of the programming language world are the functional program-
ming languages (FPLs), such as ML (Milner et al., 1997), Lisp (McCarthy, 1960),
and the pure functional programming language Haskell (Hudak et al., 2007). Many
of the internet programming languages we described use FPL principles including
immutable data types, functions as first-class values, and functional design patterns.
One of the key features of ML and Haskell is their Hindley/Milner type system.

This system performs simple checks on its computer language’s code—making
sure you didn’t get your int list in my char var(iable). It also provides an inference
system that reasons about parametrized types. To get a sense of what these are
consider Java Generic types, which were developed by Wadler by adapting Haskell’s
type system to Java (Wadler, 2006).

FPLs are based on the λ-calculus (Church, 1985) (in some sense the “purest”
functional language), which has a “black box” or “batch” processing view of comput-
ing. Programs receive input, compute, and output a value. There are no side-effects
in the λ-calculus, no stateful world the functions interact with. Discovery of Hind-
ley/Milner type systems came from the investigation of the typed λ-calculus. The
typed λ-calculus has a Curry-Howard isomorphism (Curry, 1934) with propositional
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logic, where proofs correspond to programs and propositions to types. This is a
powerful correspondence with deep implications for programming languages.

[We trace] one concept, second-order quantification, from its inception in
the symbolic logic of Frege through to the generic features introduced in
Java 5 . . . The remarkable correspondence between natural deduction and
functional programming informed the design of type classes in Haskell.
Generics in Java evolved directly from Haskell type classes, and are de-
signed to support evolution from legacy code to generic code.

—Wadler (2006)

In short, FPLs make it apparent that there is a close link between systems of logic,
deduction and inference, and reasoning about computer programs.

1.3 A Concurrent Type Theory

Milner et al. (1992) attempted to develop a calculus for specifying “realistic” computer
systems, seeking to characterize them as a collection of concurrent and communicating
processes that interact. The outcome of that research was a process calculi known
as CCS (Calculus for Communicating Systems). The refinement of CCS led to the
creation of the π-calculus which has been used as a model for mobile systems by some
authors (Milner et al., 1992). As yet these calculi have not caused a big uproar in the
developer community, though some have been used as a basis for language design. For
example CSP (Hoare, 1985) (Communicating Sequential Processes) with a channel-
based concurrency model has influenced concurrency mechanisms in GoLang (Pike &
Gerrand, 2013) and Clojure (Hickey, 2013).

The natural question that arises for programming language researchers is whether
there is a Curry-Howard isomorphism between a process calculus and a logic. This
thesis investigates a fruitful correspondence between linear logic and a type system for
a typed synchronous π-calculus. In Chapter 1 we give a specification for our process
calculus showing how one creates an abstract programming language for reasoning
about concurrent systems. In Chapter 2 we give a brief introduction to linear logic
and its connectives. We will demonstrate how linear logic is a logic of resources and
stateful reasoning. Chapter 3 unites its two predecessors by giving a Curry-Howard
correspondence between linear logic and the session types for π-calculus process terms
This correspondence provides information about programs written in our concurrent
programming language.



Chapter 2

A Language for Concurrent
Computation

2.1 Motivation

The Math Department has hired a new executive assistant, Cathy. Cathy is excited
to start helping all the teachers and students, but needs to know what to do to start
working. Cathy’s duties include directing phone calls to the intended professor in
the department, signing off on timesheets from graders and passing them on to the
business office, and scheduling thesis orals. Is there a natural way to tell Cathy how
to work? To describe Cathy herself?

Below we lay out some simple pseudo-code for some object-oriented language
which implements the Cathy work loop. Cathy works prepared to handle interruptions
for any of the tasks for which she is assigned. For each of these tasks she has a method
or procedure for handling that interruption. For example the work loop could be
described as follows:

Cathy.BeginWork( office ):

Cathy.Busy = false
Cathy.Working = true
while Cathy.Working do

if not Cathy.Busy then
if office.PhoneRinging?() then

Cathy.Busy = true
Cathy.HandleCall(office.Phone)
Cathy.Busy = false

else if office.EmailNotification?() then
Cathy.Busy = true
Cathy.HandleEmail(office.Computer.Email)
Cathy.Busy = false

else if office.DropInVisitor?() then
Cathy.Busy = true
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Cathy.HandlePerson(office.NextInLine())
Cathy.Busy = false

end if
end if

end while

We could implement one of the methods for handling an interruption with a
method the inputs a phone and uses the phone to get the call, upon which Cathy
can communicate with whomever called. Cathy asks who the call is for and uses the
answer to connect the person to the desired recipient. Once the call is through Cathy
must hang up the connection.

Cathy.HandleCall( phone ):

call := Cathy.AnswerPhone(phone)
answer := Cathy.AskForWho?(call)
while answer == “silence” do

answer = Cathy.AskAgain?(call)
if Cathy.WaitedTooLong?() then

Cathy.HangUp()
end if

end while
prof := answer
if Cathy.Available?(prof) then

Cathy.ForwardCall(call, prof)
else

Cathy.Respond(call, “unavailable”)
end if
Cathy.HangUp()

If the procedure above looks verbose and complicated for answering a phone call,
that’s because it is. Do we really need to tell Cathy how long to wait for an answer
on the phone? Or for that matter should we even need to tell Cathy to wait for an
answer at all; isn’t waiting for a response an intrinsic part of communication?

Cathy’s overall job description is that of a request handler, she processes requests
by answering questions or handing off the request to a professor say. Cathy may
receive calls over the phone, receive a timesheet online, or have a student drop-in and
request for thesis orals so she must be prepared for all possibilities.

We propose that a specification for Cathy should reflect the innate structure of
communication. We claim that there is a natural language for expressing the structure
and computation of communication, which still captures the necessary expressiveness
of the imperative language. Let Cathy be a process which offers services along dif-
ferent interfaces on which we communicate with Cathy. These interfaces in this case
might be the office, phone, and computer.

Cathy offers a choice of services to her clients, the students and professors. A post-
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it note appears in front of Cathy, and written on it is one of three labels: phoneCall,
emailNotification, and dropinvistor. These instruct her which office component should
be used next to handle the subsequent request. We view the office as a component
of Cathy’s job that she may use to receive other components, such as a phone or
computer, or send components such as candy to a drop-in visitor. For instance the
new notation for describing what Cathy does if she receives a phone call would be

Cathy← office := { // Cathy has access to the office component
office.case( // Wait for a tag on the office channel

phoneRing ⇒ { office(phone); // Had phoneRing so pick up the office phone
phone(call); // Use phone to answer call
call〈Questions〉; // Over the call send Questions
call(Answers); // Then wait for the Answers
. . . ; // Redirect call, etc.
call.wait(); // Here she waits for “Goodbye!”
Cathy } // Go back to waiting for a tag

emailNotification ⇒ {. . .}
dropinvisitor ⇒ {. . .} )}

Where office(phone) is the syntax for receiving a phone over the office channel, sim-
ilarly a call c received over the phone channel would be phone(c), or the receipt of
an email e on the computer computer would be computer(e). Also note that using
this language we can very easily see what protocol a user interacting with the Cathy
process must follow,

User← office := { office.phoneRing;
office〈phone〉;
phone〈call〉;
call(Questions);
call〈ResponsesTo(Questions)〉;
. . . ;
call.close〈〉; // Here they say “Goodbye!”
User }

Request handlers and routers are pervasive in distributed programming, from web-
servers which offer to serve static HTML files and post comments or pictures, to query
engines which must hand off requests for information to database back-ends which
also have a specification for interacting with requests.

The process model is meant to give a language to describe what happens during
some communication without needing to give a procedure for exactly how to execute
that communication. This model means to do the same thing for concurrent pro-
gramming as what functional programming intends to do for procedural languages,
describe what computations need to take place, not exactly how to implement them.
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P Q
y

z

x

Figure 2.1: Processes P and Q communicate over channel x, y, and z

2.2 Process Model

In the functional setting of the λ-calculus, a function term λx.M can be viewed as a
program that takes an input x and does something with it, determined by the term
M , producing some result. A particular input may be described by another term N
to be “fed” into that program. The λ-calculus prescribes a “reduction mechanism”
that gives the result of the application of the term λx.M to the term N . In short, we
have a calculus for describing this function application mechanism, a certain family
of computations. In the typed λ-calculus, the term you plug in must match the type
of input expected as x.

In the concurrent setting of the π-calculus (Milner et al., 1992, e.g.), a process
term z ← P ← x1, x2, . . . can be viewed as a program which consumes resources
provided along the channels x1, x2, . . . and provides a service along z, determined by
the term P . A particular resource xi is provided by another term Qi. The π-calculus
prescribes a “reduction mechanism,” analogous to the one for λ-calculus, that gives
the result of putting P in parallel with the Qi terms. Here we have a calculus for
describing the communication that proceeds from this composition, another family
of computations. In the session-typed π-calculus, the resource provided by some Qi

must match the session type of the resource expected over xi.
In this section we introduce a process model of computation which integrates a

synchronous π-calculus and a functional language. Processes P and Q communicate
using channels, which we typically identify with the variable names x, y and z. In the
general case of Milner’s π-calculus any number of processes may be arbitrarily linked
together such as in figure 2.2. In this diagram a is a shared channel between all three
processes P , Q, and R. Our presentation restricts the π-calculus model permitting
linkages to be shared by two and only two processes in a single state. With this in
mind the translation of figure 2.2 to the process model we present might look more
like figure 2.3. In fact the process model we present is a synchronous π-calculus and
therefore a group of processes which interact with each other must offer a channel
with a single set of services. A process may only offer one thing at a time.

These services that a process offers evolve through interaction with other pro-
cesses. We will annotate the evolution of processes one to another with a labelled
transition arrow P

τ−→ P ′. A process may offer to input or output information along
a channel, where information is either basic data, in the form of strings, lists, etc., or
a channel to communicate with other processes. These services will allow processes
to offer a package of services along a channel. A process may also offer a choice of
different services, where the choice may be the user’s or the server’s. These simple
operations allow us to naturally express stateful computation.
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Figure 2.2: Processes P , Q, and R, where all three share a channel a
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Figure 2.3: Processes P , Q, and R communicate with channels between pairs only
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2.2.1 Computation as communication

Processes communicate with neighbors via linkages called channels which are identi-
fied by names. In the pure π-calculus computation is represented by communication
of channel names across channels, analogous to computation in the pure λ-calculus
represented by function application. For instance say two processes P and Q commu-
nicate using some channel x. If P offers services along x, and Q uses those services
(for which we use the following syntax)

x← P := “P offers services along x” and Q← x := “Q uses services along x”

then P and Q may be composed together and the new process expression for this
composition is:

(νx)(P | Q)

which puts P and Q together in parallel composition (P | Q), sharing x as a private
channel indicated by the name restriction (νx).

Note that if P provides some service which is compatible with the service which
Q provides, if communication can proceed between the two, then we describe their
services as dual to each other.

2.2.2 Input/Output

Now that we have described how two processes offering compatible services are com-
posed, we describe the kinds of services that processes may offer. The input and
output services are fundamental in the π-calculus as they describe the transfer of
information between processes.

Suppose we have system in which the process P offers to receive some y over some
channel x and Q offers to send some w over x,

P := x(y).P ′ and Q := x〈w〉.Q′

then as long as w offers the service P expects y to provide, the system undergoes an
internal transition τ and P now uses w as it would have used y and Q goes on about
its business.

x(y).P ′ | x〈w〉.Q′ τ−−−−→ P ′{w/y} | Q′

The τ transitions are analogous to the β-reductions of the λ-calculus. Note that from
the perspective of P the process Q has instantiated a new channel (νw) (ν may be
read literally as new), for P to use, e.g. the office instantiates a new call line for Cathy
to use. In the pure π-calculus all computation is modeled by this channel passing
style, but for practical purposes it is useful to also allow for P and Q to pass basic
data-types such as strings and integers to each other, thus the names y and w may
refer to either channels or these basic data-types. Context will make the distinction
clear when necessary.
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Example: Paying the Waiter

To illustrate how input/output works lets consider a common transaction, paying the
bill for dinner. The processes are You and the Waiter. Waiter and You communicate
using the table component. On the table the Waiter sends you the bill. You use the bill
to compute the amount of money to leave plus tip, and withdraw that money from the
wallet channel and send that back to the waiter along the table. After that transaction
is done the Waiter is a WealthierWaiter and You are a PoorerButSatisfiedYou.

Waiter← table := { table〈bill〉.
table(money).WealthierWaiter }

The waiter with access to the table channel outputs a bill and inputs money, then
continues on as a WealthierWaiter.

You← table,wallet := { table(bill).
wallet〈bill〉.
wallet(money).
table〈money〉.PoorerButSatisfiedYou }

You have access to the wallet and table channels, on the table channel You input the
bill, output the bill along your wallet, input the money and output the money along
the table, continuing on poorer and satisfied. Composed together, the Waiter and
You communicate perfectly and evolve to a better state,

(ν table)(Waiter | You)
τ−→ . . .

τ−→ (ν table)(WealthierWaiter | PoorerButSatisfiedYou)

The transitions of the composition demonstrate that the process calculus is meant to
describe evolving systems. That is to say we want to describe how the state of the
Waiter and You evolves over time through a number of transactions.

2.2.3 Synchronous Communication

The process model demonstrated here is a synchronous π-calculus which means that
processes must synchronize over a channel on input/output operations before con-
tinuing communication. For x(y).P ′ and x〈y〉.Q′ to continue on as P ′ and Q′, P
must wait for Q to output along x or Q must wait for P to input along x. This is
a reasonable model for a User of Cathy’s services. For instance, a User cannot and
should not continue with a conversation until Cathy receives the phone call. In other
situations though this model is quite restrictive. For example, while Cathy is waiting
for a student to answer her questions she may want, to answer an email or two and
this model does not allow for this asynchronous communication.

2.2.4 Termination

In the synchronous π-calculus if a process P terminates communication with Q over
channel x, P sends null output along x and Q must receive this signal x().

x〈〉.P ′ | x().Q′
τ−−−−→ P ′ | Q′
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This is refered to as a channel termination or handshake. In more concrete syntax we
might have x.close() and x.wait(). It is possible to express some in process terms
asynchronicity by allowing processes to terminate communication along a channel
without this handshake. Think of the difference between the two models in terms
of a phone call. In the synchronous model we require that the user on the other
end tell us that the conversation has ended before we may hang up, but in the
asynchronous version we may hang up even if the conversation ends but we weren’t
explicitly told goodbye. For our examples we will assume that process terms which
terminate communication along a channel use this handshake to do so.

Incidentally a process which has no open channels to communicate along is referred
to as the nullary process 0 of the π-calculus, also called the inactive or terminated
process. The process 0 is the unit of parallel composition in that P | 0 ≡ P .

2.2.5 Identity as Forwarding

With just these tools we may implement a process for the π-calculus which when
handed some information i along a channel x, forwards that information along another
channel y. This process is so useful we define it as a process primitive for clarity

x(i).y〈i〉.0 ≡ [x↔ y]

2.2.6 Choice and Selection

A process may offer a choice of services, as in the Cathy example where Cathy offers
to read emails or answer the phone. For a process P to offer a variety of services
along x, P must be prepared for any service Q may select to use.

To communicate which of Cathy’s services they wished to use, a student had to
give Cathy a post-it note communicating the service. In the π-calculus we refer to
the post-it note as a label. In general, a client Q sends the label li, where i is the
index of label, over x to select the service it will use, then will behave as Q′.

Q := x.li;Q
′

For P to offer a choice of n services over x, the service offered over x is prepared for
any case of the label it could recieve.

P := x.case( l1 ⇒ P1,
l2 ⇒ P2,
. . . ,
ln ⇒ Pn )

If P receives some label li over channel x, P will behave as the process Pi. Composing
P and Q together we have the following process reduction:

Q | P τ−−−−→ Q′ | Pi
This is analogous to the case statement of many imperative languages or the case
expression of some functional languages. One may think of these case expressions as
syntactic sugar for nested conditionals.
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2.2.7 The Big Picture

In the following section we mention some of the unusual restrictions we have placed
on the process calculus. As a full treatment of the following is beyond the scope of
this thesis, a curious mind can find more details in (Toninho et al., 2014).

In this chapter we introduced a restricted process calculus similar to the one
presented in Toninho et al. (2014) which is a combination of a synchronous π-calculus,
labeled choice and selection, and basic data terms. The syntax of processes is shown
below:

Terms M,N ::= M N | (M,N) | . . . (basic data terms)
Processes P,Q ::= x〈M〉.P term output

| x (y) .P input
| (νy)x〈y〉.P bound output
| (νy) .P name restriction
| P | Q parallel composition

| x.case
(
lj ⇒ Pj

)
branching

| x.li;P selection
| [x↔ y] forwarding
| 0 termination

We write li ⇒ Pi = l1 ⇒ P1, . . . , ln ⇒ Pn for an indexed case term. The basic data
terms are from some well-typed functional language such as the typed λ-calculus are
here for convenience. These basic data terms include constructs such as functions,
strings, numbers, and lists.

As noted before this process model uses a synchronous π-calculus, but this model
further restricts processes by forcing them to provide a single service after the internal
interactions have taken place. A process may provide multiple services over a single
channel or may continue to interact after providing some service but it may not
simultaneously provide services along different channels. This restriction is analogous
to the restriction on terms of the λ-calculus to return a single value which allows us
to reason and make guarantees about programs. Although this restriction leads to a
number a desired behaviors, such as freedom from deadlock and divergent behavior,
it removes a lot of parallelism from processes which may not be desired. For example
even if Cathy is not waiting for a User to answer her questions, i.e. synchronizing on
input/output, she cannot be answering an email, no multitasking allowed.

2.2.8 Multiple Input/Outputs

In functional and imperative languages it is useful to implement a pair or list of basic
data-types. Similarly it is helpful to describe how P might offer a pair of services
to Q and how Q would use this pair. A word of caution though, this is not offering
Q a choice between multiple services as with the Cathy example of offering to pay
timesheets or answer the phone. An example of this is a spa treatment which offers
a massage and pedicure services package and you have to use both.

So how does P offer a pair of services together? Clearly P must offer some of
the services along a channel y and the other services along a different channel x, but
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P may only offer services along a single channel at a time. Consider the following
example for a process Spa

Spa := (ν pedicurist) masseuse〈pedicurist〉.
masseuse〈massage〉.
pedicurist〈pedicure〉.WealthierSpa

You := masseuse(pedicurist).
masseuse(massage).
pedicurist(pedicure).HappierYou

Composing the Spa and You together, and after several internal transitions τi we have

Spa | You
τ−−−−→ . . .

τ−−−−→ WealthierSpa | HappierYou

This example demonstrates how a process provides a package of services, first the
process binds a new channel which the will provide the first set of services call the
channel y, and sends that channel along x, after y has been sent x provides the other
set of services in the package.

This example also demonstrates one of the important benefits of this process
model. Once a procedure has been made for implementing some service, a program-
mer implementing the client interface can easily deduce the specification.

2.2.9 Example: P-Fib

To describe computations that are traditionally described with functional computa-
tions, many channels must be created and processes spawned which can clutter the
syntax of a typically neat looking problem. Here we demonstrate how “cleanly” the
π-calculus allows us to express stateful computation with by using a modified classical
computer science example.

z ← P-Fib(n) :=
{ if n ≤ 1 then

z〈n〉.z〈〉
else
{ x← P-Fib(n− 1);
y ← P-Fib(n− 2);
x(u).x();
y(v).y();
z〈u+ v〉.z〈〉 } }

The process P-Fib is parametrized by some natural number n, and offers a channel
z over which it will output an integer and then close the channel. When the process
runs, if n is sufficiently small it will output n and close the channel. Otherwise the
process will recursively spawn two P-Fib processes and bind the channels they output
along to the names x and y. The original process will input along these channels and
output their sum along z and then close the channel.
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Linear Logic

Some of the best things in life are free; and some are not.

Truth is free. Having proved a theorem, you may use this proof as
many times as you wish, at no extra cost. Food, on the other hand, has a
cost. Having baked a cake, you may eat it only once. If traditional logic
is about truth, then linear logic is about food.

—Wadler (1993)

While writing this thesis “Andrew is typing and drinking coffee” was true, but right
now this is most likely not true. The change of truth over time is studied in temporal
logic. In linear logic we wish to model how truth changes with the change of state
of the system, what is true in a pre-Thesis state and in a post-Thesis state. We
are therefore concerned with how truth from one state is consumed as a resource to
produce new truth.

In this section we introduce intuitionistic linear logic originally developed by (Gi-
rard, 1995, e.g.) as an “environmentally friendly” logic, that is to say “resource
conscious”. The model for linear logic is simple, truth is consumed when used to
produce the truth in the conclusion. Assumptions may not be freely copied and all
assumptions must be used exactly once. Linear logic is a special case of intuitionistic
logic in which we specifically disallow Contraction and Weakening structural rules—
which is to say resources must be used, from absence of Contraction, and that we
cannot freely copy assumptions, from the absence of Weakening.

3.1 Intuitionistic Linear Logic

The linear logic that we discuss here is based on natural deduction. A linear logical
proposition is defined by the following grammar:

A,B := X | A( B | A⊗B | A⊕B | A N B

where X ranges over logical constants. This is to say that propositions are built
up using the combining forms linear implication written ( (often read as “lolli”),
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multiplicative or simultaneous conjunction written ⊗ (“and”, “tensor”), disjunction
written ⊕ (“or”), and alternative conjunction written N (“with”).

We write a judgment in the form

A1, . . . , An︸ ︷︷ ︸
∆

` C

meaning that given A1, . . . , An ≡ ∆ one may conclude or prove C. We refer to ∆ as
the resources or the assumption of the judgment which is a sequence of zero or more
propositions. We refer to C as the goal. In order to prove C the rules of liner logic
require us to use all of ∆ once and only once. This form of a judgment is an example
of a sequent from the sequent calculus developed by Gentzen (1935). For example,
let pizza, beer, and student be predicates each defined on a subset of the constants
cheese, pale ale, ipa, David, and Sally. Given the set of resources pizza(cheese),
beer(ipa), and student(x), we may consume these to produce bloated(x), where x is
a schematic variable that may be instantiated with either Sally or David. Then we
write the corresponding judgment as

pizza(cheese), beer(ipa), student(x) ` bloated− student(x)

A rule of inference consists of a set of zero or more judgment written above a line
and exactly one judgment written below the line and is written as

∆1 ` C1 . . .∆n ` Cn
∆ ` C label

If all the judgments above the line are derivable then the judgment below the line
is also derivable. In words we say that if ∆1 proves C1, ∆2 proves C2, . . . , and ∆n

proves Cn, then if we have ∆, we may use the label rule and consume ∆ to prove C.
The label is the label or name of the rule, which is used for rules which are commonly
referred to.

Inference rules are concerned with the propositions we define for our logic. We may
also have judgmental rules or structural rules—so called because they are concerned
with the nature of judgments, resources and goals, and examine the structure of the
sequent not propositions.

3.1.1 Weakening and Contraction

Again the basic idea of linear logic is that we are resource conscious, all proposi-
tions in the context ∆, for some judgment ∆ ` C, must be used exactly once to
produce C. This is reflected by the absence of the structural rules weakening and
contraction/copy, present in traditional intuitionistic logic, from intuitionistic linear
logic,

∆ ` C
∆, A ` C

weakening
and

∆, A,A ` C
∆, A ` C

contraction/copy
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Weakening tells us that if given a dollar you can prove a soda, we may conclude that
given a dollar and a quarter you can prove a soda. This precisely means that we
don’t need to use resource quarter in our proof.

Contractions says that if given a dollar and another dollar you can prove a pizza,
we may conclude that given only one dollar you can prove a pizza.

Both these rules introduce non-linearity into the logic. If we had weakening we
could introduce resources into a subproof as we please, for instance if I need $40 to
conclude a lobster dinner, but I only have a dollar. I could apply weakening as in the
soda example until I had enough quarters to prove the lobster dinner, getting money
from nothing. If we had contraction we would be able to buy things cheaper than
they cost, as with the pizza example.

Therefore we want to be careful not to introduce any inference rules into our logic
that allow usedd to derive weakening or contraction.

3.1.2 Identity and Cut

Our first rule is an axiom. It has no conditions above the line for concluding the
judgment below the line. It is the identity structural rule from intuitionistic logic.
The identity states that a resource A should be sufficient to achieve A as a goal.

A ` A
idA

With only the resource A we can prove A. In our presentation of the rules of linear
logic, the proposition to which the rule is applied is often informative in the study
of the sequent calculus, hence we note this information in the subscript of the rule
label.

Fundamentally the identity rule tells us if I have chocolate as a resource available
to me, I can provide that to you.

Our second rule is also an axiom from intuitionistic logic. The rule is called cut,
and it states the opposite of the identity rule: having achieved A as a goal, we may
consume A as a resource.

∆ ` A ∆′, A ` C
∆,∆′ ` C

cutA

If using the resources ∆ one can prove A and using A and ∆′ as resources one can
prove C, then we may conclude that under the resources ∆,∆′ we can prove C. For
example cut is the idea that if I can produce pizza using my ingredients and you are
hungry enough to be able to consume it to be full, we can conclude that with those
ingredients you would be able to get full.

We are careful in id and cut not to allow for any additional unused resources:
any resource must be used exactly once. In cut as well because the resources in the
conclusion must be used exactly once either in the proof of A or C using A, we are
careful to combine the resources from the subproofs, ∆ and ∆′.

Note that our cut rule makes sure that we keep track of all our resources. In the
conclusion, ∆ and ∆′ are what get consumed and C is what is produced. In the
premises, ∆ produces A, then A and ∆′ are consumed to produce C. The net effect
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is that ∆ and ∆′ are consumed and C is produced. This is exactly what we see in
the conclusion below the line. Similarly for the id rule we had to make sure that the
only resource in the context was the proposition we are proving so that all resources
get used exactly once.

3.1.3 Simultaneous Conjunction

Suppose ∆ can be consumed to produce A, and ∆′ can be consumed to produce B. In
linear logic, then, we can conclude that ∆,∆′ can be consumed to produce a package
of A and B. This is written A⊗B. This logic is encoded in the ⊗ right introduction
rule which is as follows:

∆ ` A ∆′ ` B
∆,∆′ ` A⊗B

⊗R

The term A⊗B is the simultaneous or multiplicative conjunction of the two resources
A and B. The resources for each subproof are combined in the conclusion but no
resources may be shared between ∆ and ∆′ as this would constitute a violation of the
ephemeral nature of propositions in linear logic. You may not have the same pizza
in both ∆ and ∆′ they may both have a pizza, in which case the combined resources
∆,∆′ would have two pizzas.

We may use simultaneous conjunction A ⊗ B to package up the premises, i.e.
the judgments above the line, of an inference into a single conclusion, making the
inference a binary connective.

For an example of how we use multiple conjunction we return the spa example
from Section 2.2.8. The spa wants to be able to offer a package of its pedicure and
massage services. Can we prove the spa can offer this package? We know that with
some resources may offer pedicures (salt baths, nail files, etc.) call these ∆ and with
another set of resources (oils, towels, etc.), call them ∆′, they may produce a massage.
Symbolically this means ∆ ` pedicure and ∆ ` massage therefore

∆ ` massage ∆′ ` pedicure

∆,∆′ ` massage ⊗ pedicure
spa package

Note the label of the rule ⊗R denotes that this is a right rule which is to say
that it shows how to introduce the A ⊗ B conjunction into the right-hand side of
the sequent and achieve it as a goal. A right rule shows how to prove a proposition.
Conversely, a left rule specifies how to use a proposition. A left rule breaks down a
proposition from the set of resources on the left-hand side of the sequent. It turns out
that the ⊗ left introduction rule tells us that if we use some context ∆ := A1, . . . , An
in some proof, than we just as well could have used the package

⊗
∆ := A1 ⊗ An, a

concatenation of the resources in ∆.

∆, A,B ` C
∆, A⊗B ` C

⊗L

If we may use ∆, A and B to prove C, we may use ∆ and A⊗B to prove C.
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3.2 Harmony

Linear logic researchers use a set of criteria for checking that the left and right rules
for logical connectives satisfy both the expected intuitive and formal meanings behind
them. These criteria are at the heart of linear logic and prevent us from creating left
and right rules arbitrarily.

In this section we show the two important criteria for checking whether we have
properly specified the left and right introduction rules for a linear logical connective.
If the left and right rules meet these criteria we say that they are in harmony.

As a global theorem about a logic, the theorems which tell us we have a coherent
logical system are cut elimination and identity. These decompose into two local
properties for each connective we define, cut reduction and identity expansion. That
is to say, proving that these two properties hold for every connective gives us cut
elimination and identity for the whole logic.

3.2.1 Identity Expansion

We may now introduce the first criteria we apply to check that the introduction rules
are consistent with each other. The idea is simple, we check that the identity property
of a compound type may be reduced to other instances of the identity, without the
connective we are checking. If the right and left rules match up, then we will be able
to derive the simpler instances of the identity.

For example, here we check the multiplicative connective:

A⊗B ` A⊗B
idA⊗B −→E

A ` A
idA

B ` B
idB

A,B ` A⊗B
⊗R

A⊗B ` A⊗B
⊗L

where→E denotes the expansion, so called because we expand the proof, of an identity
rule into a proof using the identity at the smaller types.

3.2.2 Cut Reduction

Similarly there is a criteria corresponding to the structural rule cut. Here the idea is
that we may reduce a cut at some complex proposition with a connective to cuts at
smaller propositions without the connective. This also checks that the right and left
rules match up.

We see below, for example, a proof whose conclusion uses the cut rule for A⊗ B
can be replaced with a proof that instead uses the cut rule for A and the cut rule for
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B.
∆ ` A ∆′ ` B
∆,∆′ ` A⊗B

⊗R
∆′′, A,B ` C

∆′′, A⊗B ` C
⊗L

∆,∆′,∆′′ ` C
cutA⊗B

−→R

∆′ ` B
∆ ` A ∆′′, A,B ` C

∆,∆′′, B ` C
cutA

∆,∆′,∆′′ ` C
cutB

In the above, we can interpret the proof reduction step as illustrating that there is
no gain or loss of resources when we achieve A⊗B and then use it.

3.2.3 Multiplicative Unit

The unit term of binary operation A ⊗ B holds significance in our presentation of
linear logic, so we take a moment to introduce it into our logic. The multiplicative
unit is written as 1 and has the property such that A ⊗ 1 ≈ A ≈ A ⊗ 1. We write
A ≈ B to mean that using only A we can prove B and using only B we may prove A.

Let’s inspect the right introduction rule for ⊗, then, and use it to inform the right
introduction rule for 1. Here again is ⊗R rule:

∆ ` A ∆′ ` B
∆,∆′ ` A⊗B

⊗R

We have two premises leading to the binary conjunction in the conclusion. So, to
have a “nullary conjunction” in the conclusion, our notion of the unit term 1, we
then have a inference rule with no premises as shown:

· ` 1
1R

The ‘·’ signifies that there are no resources, ∆ is empty. Notice that we may always
conclude 1.

We can use the same reasoning as above to devise the left introduction rule for 1.
If we look at the rule ⊗L we see that two resources in the premise get combined into
the binary conjunction in the conclusion.

∆, A,B ` C
∆, A⊗B ` C

⊗L ∆ ` C
∆, 1 ` C

1L

Thus, we can introduce a 1 term on the left to replace no resources listed in the
premise, as follows:

∆ ` C
∆, 1 ` C

1L
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3.2.4 Failure of Harmony

We now have the tools necessary to demonstrate the importance of harmony. Say we
had produced the following two incorrect left rules for the multiplicative conjunction

∆, A ` C
∆, A⊗B ` C

⊗L1?!
∆, B ` C

∆, A⊗B ` C
⊗L2?!

In attempting to show the identity expansion we see that it fails:

A⊗B ` A⊗B
idA⊗B −→E

A ` A
idA ??

· ` B
A ` A⊗B

⊗R

A⊗B ` A⊗B
⊗L1

as it would seem that B would need to be provable from nothing. In fact with these
left rules we may derive

∆ ` C
∆, 1 ` C

1L

∆, 1⊗ A ` C
⊗L1?!

∆, A ` C
which is to say

∆ ` C
∆, A ` C

weakening

becomes a derived rule of inference which contradicts the basic assumptions of linear
logic.

3.3 Linear implication

Traditional logic usually has a connective for implication. There we use A → B to
say that “A implies B”. One of the key aspects of traditional logic is that if we know
that A is true, and we know that A→ B, we can conclude that B is true. This is the
inference rule of modus ponens. Furthermore, A still holds as fact even after using
the truth of A→ B.

Linear logic has a quirkier version of implication, one whose meaning carries the
resource-consciousness of linear logic. In fact, linear implication is used to describe a
“consumption” relation. If we may consume A to produce B, then we write A( B.
This is sometimes called the “lolli” connective because ( bears an acute resemblance
to a lollipop. Lolli has the following right introduction rule that encode its meaning:

∆, A ` B
∆ ` A( B

( R

If ∆ and A can be used to prove B then with ∆ I know that A linearly implies B. If
we know that enjoying the ambiance of a deli and eating sandwich collectively provide
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satisfaction, then we can also say that the enjoying ambiance of the deli alone sets us
up so that if we consumed a sandwich we would have satisfaction. One can also see
in the above that A(B on the right is a service contract that can be fulfilled under
the assumptions in ∆. In other words, with ∆ we know that “if you give me an A
you can gain a B in return”.

Let’s return to the spa again, this time we will model how the spa uses you to
produce money. The spa has all the resources needed to produce a massage, all the
resources except for your money that is. This means that if ∆ is the oils, towels,
and masseuse needed for the massage then we have ∆,money ` massage and we may
prove

∆,money ` massage

∆ ` money ( massage
costly massage

Now here’s the lolli left introduction rule:

∆ ` A ∆′, B ` C
∆,∆′, A( B ` C

( L

This says roughly that knowing that ∆ can be used to provide A and that ∆′ and B
can be used to provide C allows us to say that ∆, ∆′, and B can be used to provide
C. The left introduction rule for lolli tells us how we use this service contract, you
must use some of your resources to fulfill your end of the bargain with A and you
must use the rest of your resources with the B that is returned to you to achieve your
goal.

Note the difference here between traditional logic and linear logic. In traditional
logic we have modus ponens which is used to produce objectives. Given P → Q and
P we may conclude Q. In our inference rule notation this would be

Γ ` P Γ ` P → Q

Γ ` Q

If Γ allows us to prove P and it also allows us to prove P → Q then we may also use
Γ to prove Q. In linear logic we may not freely copy the assumptions of Γ if we use
P to prove Q and we can prove P .

∆ ` P ∆′, P ` Q
∆,∆′ ` Q

cut

In the linear logic we are not free to copy the assumptions in Γ. If we use ∆ to prove
P we do not have access to use it for the proof of P ( Q again. We do still have a
similar rule to modus ponens in linear logic though which we see is derived from the
( R and cut rules

∆ ` Q
∆′, P ` Q

∆′ ` P ( Q
( R

∆,∆′ ` Q
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For another demonstration using ( we show that our left and right rules are in
harmony. First we proceed with identity expansion:

A( B ` A( B
idA(B −→E

A ` A
idA

B ` B
idB

A( B,A ` B
( L

A( B ` A( B
( R

Now cut reduction:

∆, A ` B
∆ ` A( B

( R
∆′ ` A ∆′′, B ` C
∆′,∆′′, A( B ` C

( L

∆,∆′,∆′′ ` C
cutA(B

−→R

∆′′, B ` C
∆ ` A ∆′, A ` B

∆,∆′ ` B
cutA

∆,∆′,∆′′ ` C
cutB

Therefore we see that the left and right rules for ( are in harmony.

3.4 Additive Conjunction

A sandwich shop can consume money to provide you with a reuben. Alternatively
the sandwich shop can consume money to produce a BLT. In linear logic terms this
means we can prove both

money ` reuben and money ` BLT

Clearly we cannot express this in linear logic with the connectives we have explained
thus far as something like

money ` reuben⊗ BLT ?!

would require money to be copied in the proof. But clearly we may prove either one.
The connective we use to express this situation is additive or alternative conjunction
written A N B, read as “A with B”. We can achieve ANB as a goal from resources
∆ exactly if we can achieve A from ∆, and we can alternatively achieve B from ∆.

∆ ` A ∆ ` B
∆ ` ANB

NR

It appears that we are copying resources in the premises, hence violating linearity,
but the left rules show us that only one of the premises can be used. To consume
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ANB we must choose whether we want to use A or we want to use B

∆, A ` C
∆, ANB ` C

NL1

∆, B ` C
∆, ANB ` C

NL2

The identity expansion and cut reduction show that the left and right rules are indeed
in harmony and that linearity is indeed preserved. The identity expansion is

ANB ` ANB
idANB −→E

A ` A
idA

ANB ` A
NL1

B ` B
idB

ANB ` B
NL2

ANB ` ANB
NR

For cut reduction there are two symmetric reductions, the first one we demonstrate
here and the second when the second premise of the cut is inferred with the NL2 rule.

∆ ` A ∆ ` B
∆ ` ANB

NR
∆′, A ` C

∆′, ANB ` C
NL1

∆,∆′ ` C
cutANB

−→R

∆ ` A ∆′, A ` C
∆,∆′ ` C

cutA

Using the new connective we have the sandwich rule of inference.

money ` reuben money ` BLT

money ` reuben N BLT
sandwich

3.5 Disjunction

The resource A N B provides us with a choice of either using A or B in our proof.
Providing AN B we have to account for both uses, the sandwich shop must be able
to make either sandwich.

If we think alternative conjunction as a resource that stands for a kind of choice, we
may think of disjunction symmetrically. An example of disjunction is the daily special
at our sandwich shop. When we walk in wanting to consume the “special” resource,
we must be prepared to consume any special sandwich that might be provided. Dual
to this is the sandwich shop which now gets to choose which sandwich to provide us
with; either a grilled cheese or a panini.

If A ⊕ B is a resource we are provided with either A or B as a resource, so we
have to account for either sandwich. . . situation.

∆, A ` C ∆, B ` C
∆, A⊕B ` C

⊕L

Conversely, we may offer A⊕B by providing A or by providing B.

∆ ` A
∆ ` A⊕B

⊕R1
∆ ` B

∆ ` A⊕B
⊕R2
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Concretely our sandwich shop can satisfy either

money ` panini or money ` grilled cheese

So we may prove

money ` grilled cheese

money ` grilled cheese⊕ panini
special1

money ` panini

money ` grilled cheese⊕ panini
special2

the “special” sandwich rules of inference.
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Another Curry-Howard
Isomorphism

In this section we introduce a correspondence between the process calculus we in-
troduced in Chapter 2 and linear logic introduced in Chapter 3. This relationship
between a calculus and a logic is often referred to as a Curry-Howard correspondence,
named for the two researchers who independently showed a correspondence between
the proof terms of natural deduction and terms of the λ-calculus. The isomorphism
gives programs an operational and logical meaning, which allows us to construct pro-
grams which can easily check the soundness of a program without actually running
it. The original Curry-Howard Isomorphism relates

propositions as types,
proofs as programs, and

proof normalization as program evaluation.

So if τ is some type or proposition from natural deduction we would label it with a
term variable, such as x, and we would write x : τ meaning that the variable x has
type τ .

(x : τ) ∈ Γ

Γ ` x : τ

Combining these variables using logical connectives such as implication yields more
complex expressions, called terms. You can see modus ponens in the typing rules
for function application by ignoring the terms M and N and thinking of τ and σ as
propositions:

Γ `M : τ → σ Γ ` N : τ

Γ `M(N) : σ

This kind of correspondence has arisen in a number of computational settings (Wadler,
1993).

A similar connection between the π-calculus from Milner et al. (1992) and some
kind of logic has been sought by programming language researchers and logicians
alike.
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A Curry-Howard correspondence between a process calculus and some logic is in-
teresting for a few reasons. From the computer science perspective the correspondence
may allow us to make certain guarantees about safety of our concurrent programs
granted that we restrict ourselves to programming within the correspondence. For
example Haskell restricts programmers to typed functional programs which decreases
the programmers expressive power in their programs but these restrictions may also
allow them to easily find common bugs. Programmers may use similar tools from a
concurrent language correspondence that would allow them to find more complicated
bugs in programs, such as network code.

The correspondence is also of interest for its own sake. To prove some complicated
logical inference rule I need only construct some intuitive program. Conversely I can
see what happens to my logic as I add more constructs to the programming language,
observing what the new equivalences are and how they affect the coherence of my
logic.

The Curry-Howard correspondence between linear logic and the π-calculus we
address here is based on a line of recent research by Caires et al. (2012) with

linear propositions as session types,
linear proofs as processes, and

linear cut reduction as communication.

4.1 Interpreting Judgments

In the functional programming correspondence, a basic judgment of the form M : τ
takes on the operational interpretation that M is a term of type τ or the logical
interpretation that M is a proof of τ .

In the concurrent setting the processes are dynamic as they communicate, hence
it is not meaningful to say that “P is a process of type A”. In a stateful model of the
world identity and state are decoupled from one another. For instance my identity
is Andrew, this name is used to refer to me, but my state at the time of writing
this is that of a student. Although my state may change to a graduate my identity
stays the same. Similarly the identity of a process P is constant, but the services
that the process offers, the state, changes and it is the state of the system which
we reason about. The differences between Andrew as a student and graduate in our
process setting are the services provided along channels in Andrew ’s scope. To offer
student services is to say that along a channel we will call school, Andrew will input
assignments until a graduation label is sent after which the school channel is closed,
and we offer set of graduate services on the new life channel.

Processes communicate with their environment by offering services along their
channels, providing an interface for other processes. So we write P :: x : A to mean
that the process “P is a process that provides a service of session type A along the
channel x”.

Processes not only offer services but use the services offered by other processes.
To express what services a process uses we write the sequent

x1 : A1, . . . , xn : An ` P :: x : A
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to mean that if when P is assumed to rely on communication channels offering
A1, . . . , An then P offers A, where x1, . . . , xn are all distinct. We are simply la-
beling the resources of linear logic sequent ∆ ` A with channels and the goal with a
process term and the channel it provides its services on.

The session type A may use any of the logical connectives we presented in the
previous chapter. In the forthcoming section we shall show what each of these con-
nectives means in terms of a process interpretation.

Of note is that our sequent formulation has a singleton right-hand side of the
judgment. This notation reflects the position that offering and using services are
inherently asymmetric and that we restrict processes to offering one service at a
time. It also allows us to cleanly observe and enforce the scope of a name within an
inference. The benefits of using this unusual version of linear logic are discussed in
detail in Caires et al. (2012).

Processes evolve through interaction on channels. Once a process has interacted
with a process along a channel, we may not in general use that service again along the
same channel. The session types are linear propositions. We begin our discussion of
the isomorphism between linear logic and our process model with a discussion of the
structural rules for linear logic, namely how they relate to constructs of our process
calculus. We then return to our process language examples to include session types,
hopefully conveying their usefulness.

The correspondence allows us to either use the language of process calculi or the
language of linear logic to describe process terms or linear logic process proofs because
terms and proofs are essentially the same thing, up to isomorphism.

4.2 The Correspondence

4.2.1 Cut as Composition

In subsection 2.2.1 we described the parallel composition of two processes (νx)(P | Q)
as having meaning exactly when P and Q offer and use compatible services along x.
Notice that the cut rule describes exactly the same thing:

∆ ` A ∆′, A ` C
∆,∆′ ` C

cut

That is to say that if we can offer A under the resources ∆ and A is used by some
other proof to provide C, we can put the sets of resources together in ∆,∆′ and can
be used to provide C. If one squints at the cut rule we see that we are simply saying
that if something needs A and something else uses A, we can link them up together.

Suppose a process P offers a service of type A and suppose a process Q uses
a service of type A then these two are compatible and their composition will be
embodied in a new cut rule decorated with process calculus terms.

∆ ` P :: x : A ∆′, x : A ` Q :: z : C

∆,∆′ ` (νx)(P | Q) :: z : C
cut
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Note that the service which P offers is along channel x which is a channel that Q
relies on. In linear logic, we said that A could be any of the complex propositions
constructed from the proposition grammar. Similarly A here could be any complex
transaction as long as P fulfills the promise of A and Q uses the promise somewhere.

4.2.2 Identity as Forwarding

Recall the id rule from linear logic. Using our new interpretation of linear propositions
A, it says given the service A as a resource, we may use that resource to provide the
service A. Note that this is exactly the logic governing fowarding in the process
calculus, so we have the forwarding session typing rule below:

A ` A id

The forwarding service had access to a single service along some x and provided that
same service along some other y. That is to say if we have access to a service A along
x we may use that provide A along y.

x : A ` [x↔ y] :: y : A
id

The cut and identity of linear logic fundamentally balance the propositions on both
sides of the judgment. Similarly our process interpretation of cut and identity balance
offers and uses of services.

These rules cut and id do not describe the action of any particular services though,
which we would expect as cut and identity are structural rules of the logic and are
not concerned with the structure of propositions.

We will see that the harmony criteria that arise from cut and identity correspond
to implementation criteria for our process expressions.

4.2.3 Input

Now we demonstrate how specific logical connectives are associated with process
expression from the π-calculus. For clarity we will standardize our discussion of the
logical connectives and their process counterparts by showing how to provide a service
along a channel first. Proof-theoretically this means giving the process interpretation
of the right rules of introduction first.

Recall the “lolli” connective for linear implication. To offer an A ( B, it should
be true that if we are given an A then B is true:

∆, A ` B
∆ ` A( B

( R

That is to say if I offer you A ( B, you must output an A so I can return a B.
Decorating the premise under the process interpretation we have

∆, y : A ` P :: x : B
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which can be read as, P provides B along x, when provided A along y. We already
know how to accomplish this, simply input the channel y along x,

∆, y : A ` P :: x : B

∆ ` x(y).P :: x : A( B
( R

Note how the inference relies on the channel x changing state. The premise says that
if P uses some y offering A to provide B along x we can conclude the the input process
x(y).P provides A ( B along x. Note how the state of x changes, first providing
A ( B and then providing B. The process model and linear logic are designed to
capture and model this kind of state change. This is why we refer to the “type” of x
as a session type, we are trying to encapsulate the idea that x has dynamic behavior.
Once x has used an A, it may not do so again, it must behave as B. Therefore A( B
describes a session which uses an A and behaves as B.

Using the service A ( B is now simple to describe. If another process offers
A ( B along x, we use this service by making a new channel y offering A and
outputting y along x.

∆ ` P :: y : A ∆′, x : B ` Q :: z : C

∆,∆′, x : A( B ` (νy)x〈y〉.(P | Q) :: z : C
( L

where the channel resources ∆ are used exclusively in P and the channel resources
∆′ are exclusive to Q. The channel binding (νy) is necessary so that the spawned
channel is not confused with any other name. It is important to take note that P
and Q do not communicate with each other directly as they have no shared names,
there is no channel linkage between them.

We demonstrate why P and Q don’t necessarily communicate. Here is an example
of this kind of transaction in real life.

(ν wallet) register 〈wallet〉.(You | Accountant) :: computer : taxes

where the process has access to some register : Money ( Receipt as a resource. In
English we provide money from our wallet to the register which now gives a receipt to
our accountant who provides our taxes on the computer. In the process language we
say that along the register channel we use the Money ( Receipt service it offers.
When the register is offering this service, You spawn a fresh wallet channel along the
register upon which you will fulfill the promise of Money and your Accountant uses
the Receipt now offered along register to do your Taxes. You and the Accountant
do not communicate here, you synced up for a moment at the register but you go on
about your business after.

4.2.4 Output

We have shown that using the service A ( B requires output. In this section
we show that that offering output service corresponds to multiplicative conjunction.
From linear logic we have:

∆ ` A ∆′ ` B
∆,∆′ ` A⊗B

⊗R
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To offer you a package of A and B together, I must be able to provide them both
separately.

From the premises it is clear that the package A ⊗ B is offered by having one
channel provide A and the other channel provide B. But how do we offer a package
of services?

Recall the first spa example from 2.2.8, where we needed to provide both a mas-
sage and pedicure. To do so the masseuse introduced us to the pedicurist first
then offered the massage service. First we had to output one of the channels along
the other. This is exactly how we provide a session of type A⊗B, as can be seen in
the typing rule below:

∆ ` P :: y : A ∆′ ` Q :: x : B

∆,∆′ ` (νx)x〈y〉(P | Q) :: x : A⊗B
⊗R

To offer you A and B, first I may give you access along x to a y of type A which
P provides and then I give you B along x. Note the similarity of the process term
which uses A ( B. the process term of the left rule for linear implication. Both
processes send a new channel over an existing channel to establish a new linkage
between processes. We could also output a y : B and have x behave as type A in the
rule above. We will discuss this asymmetry below.

It should be clear how we implement a process which uses a service of type A⊗B.
We input a y : A along x and continue using x which now offers session type B.

∆, y : A, x : B ` Q :: z : C

∆, x : A⊗B ` x(y).Q :: z : C
⊗L

4.3 Terms as Proofs

Now that we have demonstrated the basic correspondence between linear logic in-
ference rules and our session-typed process calculus, we examine the fruits of our
labor.

In section 3.1.3 we introduced the linear logic connective ⊗ which showed use how
to package up propositions.

∆ ` A ∆′ ` B
∆,∆′ ` A⊗B

⊗R
∆, A,B ` C

∆, A⊗B ` C
⊗L

Furthermore in section 4.2.3 we added process terms to these rules

∆ ` P :: y : A ∆′ ` Q :: x : B

∆,∆′ ` (νx)x〈y〉(P | Q) :: x : A⊗B
⊗R

∆, y : A, x : B ` Q :: z : C

∆, x : A⊗B ` x(y).Q :: z : C
⊗L

A process offering A ⊗ B along x outputs a channel y : A and then offers B along
x. There is an asymmetry here as we could also have used y to provide B and
x to subsequently provide A. The process which provides B and then A provides
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essentially the same service as the service which provides A and then B in the sense
that A⊗B can be used to provide B ⊗ A using a forwarding service:

x : A⊗B ` x(y).(νw)z〈w〉.([x↔ w] | [y ↔ z]) :: z : B ⊗ A

From a channel x offering A⊗B, input the y : A, then we using two forwarding services
composed such that the forwarding of B is first and we forward A after, swapping
the order of the services. The situation here is similar to the ordering of tuples in a
functional or imperative setting, the product τ×σ is not equal to σ×τ but the two are
indeed isomorphic. For example say we have tuples of type (string, int) like (Jim, 1)
and (Jerry, 2), we need only swap the order with swap : (string, int)→ (int, string)

swap(first, second) = (second, first)

to achieve an isomorphism between the two types.
Note that our Curry-Howard isomorphism now allows us to conclude the process

term
x(y).(νw)z〈w〉.([x↔ w] | [y ↔ z])

corresponds to a linear logic proof of the judgment A ⊗ B ` B ⊗ A. We may apply
the inference rules to see the proof tree:

x : B ` [x↔ w] :: w : B
idB

y : A ` [y ↔ z] :: z : A
idA

y : A, x : B ` (νw)z〈w〉.([x↔ w] | [y ↔ z]) :: z : B ⊗ A
⊗R

x : A⊗B ` x(y).(νw)z〈w〉.([x↔ w] | [y ↔ z]) :: z : B ⊗ A
⊗L

Stripping away the process terms we have the linear logic proof as expected:

B ` B
idB

A ` A
idA

A,B ` B ⊗ A
⊗R

A⊗B ` B ⊗ A
⊗L

So if we wanted a proof of a fact in linear logic we could try and find the proof tree
within that logic. Alternatively, we could ask a process calculus programmer to write
a process term program with the appropriate session types. Using that process term
and our typing rules we could unfurl that proof tree instead.

4.4 Harmony and Term Rewrites

In this section we examine the translation of the harmony criteria from linear logic
to our process interpretation under our Curry-Howard correspondence. We presented
the harmony criteria for linear logic in section 3.2. These criteria allowed us to check
whether our constructions formed a coherent logic by balancing the resources on both
sides of a sequent. The first harmony criteria was identity expansion which will give
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us implementation criteria for process terms, specifically that any forwarding of any
service can be implemented as the forwarding of smaller services. Cut reduction
will correspond to the term reduction (τ transitions) from our process calculus. To-
gether we see that the proof rewrites which must hold for linear logic correspond to
term rewrites from the π-calculus, thus the harmony criteria which garunteed logical
coherency will correspond to type preservation for our session-typed process terms.

4.4.1 Reduction

Cut reduction corresponds to process reduction and communication, the internal τ
transitions discussed in our process calculus.

We demonstrate with linear implication.

∆, y : A ` P :: x : B

∆ ` x(y).P :: x : A( B
( R

∆′ ` R :: w : A ∆′′, x : B ` Q :: z : C

∆′,∆′′, x : A( B ` (νw)x〈w〉.(R | Q) :: z : C
( L

∆,∆′,∆′′ ` (νx)(x(y).P | (νw)x〈w〉.(Q | R)) :: z : C
cutA(B

−→R

∆′′, x : B ` Q :: z : C

∆′ ` R :: w : A ∆, y : A ` P :: x : B

∆,∆′ ` (νw)(P{w/y} | R) :: x : B
cutA

∆,∆′,∆′′ ` (νx)((νw)(P{w/y} | R) | Q) :: z : C
cutB

Note the conclusion before and after the reduction are

∆,∆′,∆′′ ` (νx)(x(y).P | (νw)x〈w〉.(Q | R)) :: z : C
τ−−−−→

∆,∆′,∆′′ ` (νx)((νw)(P{w/y} | R) | Q) :: z : C

We apply the structural congruences of the π-calculus, extruding the bindings on x
and w and invoking associativity, to make these easier to read:

∆,∆′,∆′′ ` (νx)(νw)(x(y).P | x〈w〉.(R | Q)) :: z : C
τ−−−−→

∆,∆′,∆′′ ` (νx)(νw)(P{w/y} | R | Q) :: z : C

Indeed we see that cut reduction mirrors a process reduction, matching an input
with a corresponding output, modulo the structural rules. The general case of this
reduction is just the τ transition for input/output:

(x(y).P | x〈w〉.Q)
τ−−−−→ P{w/y} Q
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4.4.2 Expansion

Cut reduction shows how a server and client of a service communicate with each other.
Identity expansion on the other hand tells us that forwarding a complex service should
be decomposable into forwardings of channels of the simpler types.

x : A( B ` [x↔ z] :: z : A( B
idA(B

−→E

y : A ` [y ↔ w] :: w : A
idA

x : B ` [x↔ z] :: z : B
idB

x : A( B, y : A ` (νw)x〈w〉.([y ↔ w] | [x↔ z]) :: z : B
( L

A( B ` A( Bx : A( B ` z(y).(νw)x〈w〉.([y ↔ w] | [x↔ z]) :: z : A( B
( R

In words we have z : A ( B mimic x : A ( B directly, or we could equivalently
input a y : A along z and output a new w to x, where w mimics y : A and z now
mimics x : B.

4.5 Some Fine Print

4.5.1 Composing Cut and Identity

Composing a forwarding service [x↔ y] of A and a process Q which uses y : A should
be equivalent to just renaming the channel which Q uses to provide A, Q{x/y} provide
the name x doesn’t occur in Q. In the correspondence this means that a cut with the
identity should have no effect. We show this using the process terms in the following
inference

y : A ` [y ↔ x] :: x : A
id

∆, x : A ` Q :: z : C

∆, y : A ` (νx)([y ↔ x] | Q) :: z : C
cut

−→

∆, y : A ` Q{y/x} :: z : C

And symmetrically,

∆ ` P :: x : C x : C ` [x↔ z] :: z : C
id

∆ ` (νx)(P | [x↔ z]) :: z : C
cut

−→

∆ ` P{x/z} :: z : C
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Thus composition with a forwarding service, the identity, is somehow equivalent to
renaming a channel, “cutting out the middleman”. The reduction arrows here are not
the internal transition arrows from our process calculus, 6 τ−→, but more like structural
reductions, which is to say that no communication or computation is taking place.
A structural reduction between two process terms can be viewed as a difference in
implementation. For example, say you have a work and personal email address. On
the personal email service you offer the respond service, but everyone at work only
knows your work email so they send emails there and you have Google forward those
emails to personal. We can say that you are essentially the same as if you offered to
respond over your work email, modulo a structural reduction.

4.5.2 Composing Cuts

If we have several process terms composed together, it would be desirable if they
needed only to synchronize when their interactions required not on every computation.
If Heather, Sammy, and Max a having independent conversations, the order in which
they call each other should not matter.

In our correspondence, this is reflected in the fact that the order of consecutive cuts
are insignificant. This is established by using the fundamental structural equivalences
of process terms:

(P | Q) | R ≡ P | (Q | R) associativity
P | Q ≡ Q | P commutativity

P | (νx)Q ≡ (νx)(P | Q) scope extrusion
where x ∈ fn(P )

Where the condition x /∈ fn(P ) means that variable x is not a free name in P . Since
(νx) binds a name, this condition ensures that two different variables with the same
name are not confused. If we find a conflict we may rename the bound variable to
allow for scope extrusion.

These basic equivalences may then be used to derive the corresponding laws which
we will consider to be higher order structural congruences or structural equivalences.

(νx)((νy)(P | Q) | R) ≡ (νy)(P | (νx)(Q | R))
where x /∈ fn(P ) and y /∈ fn(R)

(νx)(P | (νy)(Q | R)) ≡ (νy)(Q | (νx)(P | R))
where x /∈ fn(Q) and y /∈ fn(P )

For our purposes here, we distinguish processes modulo structural congruence. A
practical disadvantage of this construction comes when implementing an algorithm for
type-checking processes, because we may need to rearrange expressions by structural
congruences, before applying the typing rule makes sense.

4.6 Extending the Correspondence

We will now extend the session-typed processes to include termination corresponding
to the multiplicative unit 1 and choice which will correspond to logical connectives
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⊕ and N.

4.6.1 Termination

We claimed in section 2.2.4 that it would be beneficial to discuss the multiplicative
unit 1. Here the discussion pays off as we see that 1 plays a role as the termination
service.

Just as we derived the right and left rules for 1 thinking of it as the nullary version
of ⊗ we may derive the process interpretation rules by thinking of 1 as the process
which then outputs nothing and has no continuation:

· ` x〈〉.0 :: x : 1
1R

We discussed this process in section 2.2.4 in part due to this correspondence with
linear logic. When using a termination service we expect that we will input nothing,
signaling the connection is terminated.

∆ ` Q :: z : C

∆, x : 1 ` x().Q :: z : C
1L

Cut reduction here corresponds to the process reduction

(νx)(x〈〉.0 | x().Q)
τ−−−−→ (0 | Q) ≡ Q

The left and right rules defined for 1 are sufficient towards the goal of establishing
a Curry-Howard isomorphism between linear logic and our process calculus. We may
not need a full Curry-Howard isomorphism to be able to make the kinds of guarantees
we want for a practical language though.

The idea here is that a process P which does not offer any services is typed as
∆ ` P :: x : 1. Once composed processes offering the appropriate resources required
by ∆, it should evolve by internal actions only and be closed to communication.
Composing P with another closed process ∆′ ` Q :: z : 1 should have no effect and
both should evolve independently, without interacting. Currently our rules do not
allow for the parallel composition of P and Q, P | Q, observe

∆ ` P :: x : 1

∆′ ` Q :: z : 1

∆′x : 1 ` x().Q :: z : 1
1L

∆,∆′ ` (νx)(P | x().Q) :: z : 1
cut

The restriction x().Q on Q forces the composition to be sequential and not parallel
in that P must finish before Q can continue.

We might be willing to give up some of the correspondence to recover parallelism
from the model. There are several ways that we could go about this and here we
pursue this goal by making the 1L rule silent such that we have the same proof term
in the premise and conclusion Pfenning (2012). With this alternate rule different
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proofs collapse to the same process, so we no longer have an isomorphism. This is
a phenomenon which occurs in other applications of the Curry-Howard Isomorphism
and we say that proofs are contracted to programs. Consider the alternate left and
right rules for 1 as follows

· ` 0 :: x : 1
(1R)′

∆ ` Q :: z : C

∆, x : 1 ` Q :: z : C
(1L)′

The cut reduction is then just the structural congruence (νx)(0 | Q) ≡ Q where
x /∈ fn(Q). Note that now we have

∆ ` P :: x : 1

∆′ ` Q :: z : 1

∆′x : 1 ` Q :: z : 1
1L

∆,∆′ ` (νx)(P | Q) :: z : 1
cut

Provided we have x /∈ fnP we can use the structural congruence (νx)P ≡ P to turn
the process in the conclusion into (P | Q), proving an parallel composition rule.

From a practical standpoint we may want to allow for both kinds of termination in
our programming language. The implementation of “channels” in GoLang, allows for
synchronous or asynchronous termination but only the server may signal termination
along the channel (Pike & Gerrand, 2013).

If we are not programming in a setting with a concurrent type theory, such as
an asynchronous or strongly parallel setting, there are different control structures,
for example the GoLang select statement (Pike & Gerrand, 2013), benefit from the
close/wait syntax, while for other design patterns, such as an HTML server, it
might be costly to have to wait for a close signal before moving on with computation.

4.6.2 Choice

External choice or branching means to offer a service which provides a choice between
the services A and B. The Cathy process in 2.1 offers external choice because the user
must decide whether to send an email, a phone call or drop-in visit. The traditional
presentation of external choice in the literature Caires et al. (2012) uses binary guarded
choice in the process calculus to establish the correspondence between the linear
connective A N B with its process interpretation. This is to say that instead of the
indexed labeled choice process we defined in Chapter 2 x.case(li ⇒ Pi) we use the
binary guarded choice is written as x.case(P,Q) and the selection processes x.inl,
“in left” to choose the left process P , and x.inr, “in right” to choose the right-hand
process Q. It is very easy to implement the indexed version using the binary guarded
choice but it is easier to demonstrate the process interpretation of the left and right
rules for ANB that we have already defined.

Recall the left and right rules for the external choice connective:

∆ ` A ∆ ` B
∆ ` ANB

NR
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∆, A ` C
∆, ANB ` C

NL1

∆, B ` C
∆, ANB ` C

NL2

At the client’s discretion only either A or B will be used, and therefore the context
∆ can safely be propagated to both premises. Conversely, if a client wants use ANB
from the environment, the must choose either A or B.

A client indicates which service they chose by sending a label (inl or inr) along a
channel and then the client uses uses the service they selected A or B respectively
along that same channel.

∆ ` P :: x : A ∆ ` Q :: x : B

∆ ` x.case(P,Q) :: x : ANB
NR

∆, x : A ` Q :: z : C

∆, x : ANB ` x.inl;Q :: z : C
NL1

∆, x : B ` Q :: z : C

∆, x : ANB ` x.inr;Q :: z : C
NL2

A curiosity here is the difference in notation between i/o and choice. With i/o we
notate the continuation of a process with “.” for example x〈y〉.Q means to “input
a y along x and continue as Q”. On the other hand with choice we use the “.” to
mean the sending of a label along that channel, x.inl;Q means to send the inl label
along x and continue as Q. It is left to the reader to decide whether the distinction
in the syntax for sending a label opposed to other input is useful, or if overloading
the syntax x〈inl〉 would be clearer.

Cut reduction corresponds to the following process reduction

(νx)(x.inl;R | x.case(P,Q))
τ−−−−→ (νx)(R | P )

(νx)(x.inr;R | x.case(P,Q))
τ−−−−→ (νx)(R | Q)

Identity expansion for x : ANB ` [x↔ z] :: z : ANB corresponds to the implemen-
tation

[x↔ z]⇒ z.case(x.inl; [x↔ z] | x.inr; [x↔ z])

Internal choice, often just called choice in the literature, means the server offers
either A or B along a channel x. The distinction between branching and choice is
that in branching the user process decides but in choice the offering process is the one
to decide. Choice is symmetric to branching in the sense that now the user must be
prepared for either A or B. The process interpretation of the rules for A⊕B should
be clear from the external choice choice section above.

∆ ` P :: x : A

∆ ` x.inl;P :: x : A⊕B
⊕R1

∆ ` P :: x : B

∆ ` x.inr;P :: x : A⊕B
⊕R2

∆, x : A ` P :: z : C ∆, x : B ` Q :: z : C

∆, x : A⊕B ` x.case(P,Q) :: z : C
⊕L

The reduction here is the same as the reduction for external choice and the identity
expansion for x : A⊕B ` [x↔ z] :: z : A⊕B corresponds to the implementation

[x↔ z]⇒ x.case(z.inl; [x↔ z] | z.inr; [x↔ z])
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4.7 Taking Stock

The grammar for the session types and corresponding processes we have defined gives
us the following grammar:

Session Types A,B,C ::= A( B input channel of type A
and continue as B

| A⊗B output a fresh channel of type A
and continue as B

| 1 terminate

| N
{
lj : Aj

}
offer a choice between lj

and continue as Aj
| ⊕

{
lj : Aj

}
provide one of the lj

and continue as Aj
Processes P,Q ::= x〈M〉.P term output

| x (y) .P input
| (νy)x〈y〉.P bound output
| (νy) .P name restriction
| P | Q parallel composition

| x.case
(
lj ⇒ Pj

)
branching

| x.li;P selection
| [x↔ y] forwarding
| 0 termination



Chapter 5

Quantification

Note that in the beginning of Chapter 3 we parametrized an atomic proposition
student with the name x, meaning for all students x, where x is a string such as
“Jim” or “Jerry”. This an example of an extension of linear logic in which we
quantify over all x which are a proof of a string type.

A typed process calculus serves much more practical significance if we are able to
integrate data from a typed functional or imperative language. Allowing processes to
pass integers, strings, lists, and other basic data types is invaluable to a useful process
model, we do not want to worry about constructing the Church numeral equivalents in
channels. To this end we introduce quantification into linear logic, where the domains
of the quantifiers are from the typed λ-calculus or some other well typed calculus,
although we will show there are very few restrictions needed of these types and terms
for them to make sense as an extension, i.e. harmonize in our linear logic.

This requires that we have a new external typing judgment in the environments
of our inferences.

A natural question that arises in our considerations of linear logic, is how we can
extend our logic to reason about linear propositions which are parametrized by proofs
from some nonlinear logic. We present an extension of linear logic with quantification,
where the domains of the quantifiers are external to linear logic.

This requires us to have a new external typing judgment.

5.0.1 Judgments

In order to introduce these quantifiers we must add a new external typing judgment
to our inference rules. The basic judgment is of the form M :τ , meaning the object M
is a proof of type τ . We will interchangeably refer to objects as terms (viewing these
objects as functional expressions) and as values (contrasting them with channels).
We will use this basic judgment in its hypothetical form:

Ψ `M : τ

where Ψ is a collection of distinct hypotheses ni:τi, analogous to ∆ from the linear
logic judgments. The context Ψ is where we record the types for the term variables
allowing us to be explicit about the available parameters for the proof. These term
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variables are not considered resources and may be used arbitrarily often. Few require-
ments are needed of the types τ and we will present the necessary restrictions for the
quantifiers to make sense, i.e. for the left and right rules to harmonize. Otherwise
our presentation shows that it does not really matter how the types and the terms
which prove them are constructed.

The general form of our judgment becomes:

m1:τ1, . . . ,mk:τk︸ ︷︷ ︸
Ψ

; x1:A1, . . . , xi:Ai︸ ︷︷ ︸
∆

` P :: z : C

where all variables are distinct, m are term variables and x are linear channels.

5.1 Universal Quantification

We first examine universal quantification. We write ∀n:τ.A, universally quantifying
over objects which are a proof of type τ .

Recall that the left introduction rule for ∀n:τ.A tells us how to use this resource.
The proposition ∀n:τ.A means that A is true for any object of type τ . So when we
can use our term variables to prove some M :τ , we may substitute all occurrences of
n with M in the A which uses it:

Ψ `M : τ Ψ ; ∆, A{M/n} ` C
Ψ ; ∆,∀n:τ.A ` C ∀L

Here, the typing of M does not depend on ∆, because we stipulate that terms cannot
depend on linear resources, i.e. functional variables cannot rely on the channels from
processes.

The right rule shows how we prove ∀n:τ.A is true. If we can prove A{m/n} for
any new parameter m of type τ then we may provide ∀n:τ.A:

Ψ,m:τ ; ∆ ` A{m/n}
Ψ ; ∆ ` ∀n:τ.A

∀R

We may only apply the right rule if m is not already in Ψ, but we are always able to
choose a fresh name if a copy is needed. Note that for n to appear in some A we must
allow some atomic propositions to depend on term variables, such as the student(x)
proposition.

5.2 Harmony for Universal Quantification

We will now show what logical restrictions on the term variables and types, or rather
the judgment Ψ `M :τ , are needed to make sure our left and right rules for universal
quantification are consistent. Consider the cut reduction criterion first:

Ψ,m:τ ; ∆ ` A{m/n}
Ψ ; ∆ ` ∀n:τ.A

∀R
Ψ `M : τ Ψ ; ∆′, A{M/n} ` C

Ψ ; ∆′, ∀n:τ.A ` C
∀L

Ψ ; ∆,∆′ ` C
cut∀n:τ.A
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We need to be able to reduce this complex cut to the cut at the two premises: A{m/n}
in the first premise, and A{M/n} in the second premise. We must substitute M for
m throughout the sequent Ψ,m:τ ; ∆ ` A{m/n}. Since m is a fresh name, thus
does not occur in Γ, ∆ or A, we obtain Ψ ; ∆ ` A{M/n}. Therefore, for the first
restriction on the types and terms we have:

Substitution Principle. If Ψ ` M : τ and Ψ,m:τ ; ∆ ` A then
Ψ ; ∆ ` A{M/m}, provided ∆ does not depend on m.

This principle gives us the following admissible rule, rather than a rule of inference,

Ψ `M : τ Ψ,m:τ ; ∆ ` A
Ψ ; Γ{M/m} ; ∆{M/m} ` A{M/m}

subst

Where whenever we can prove the premises, then we can construct the conclusion
based on our assumptions about how Ψ `M : τ interacts with sequents. The dashed
line indicates we are using some principle about proofs in general rather than some
derived rule from the basic axioms. Using this notation, the evidence for cut reduction
is:

Ψ,m:τ ; ∆ ` A{m/n}
Ψ ; ∆ ` ∀n:τ.A

∀R
Ψ `M : τ Ψ ; ∆′, A{M/n} ` C

Ψ ; ∆′, ∀n:τ.A ` C
∀L

Ψ ; ∆,∆′ ` C
cut∀n:τ.A

−→R

Ψ `M : τ Ψ,m:τ ; ∆ ` A
Ψ ; ∆ ` A{M/n}

subst
Ψ ; ∆′, A{M/n} ` C

Ψ ; ∆,∆′ ` C
cutA{M/n}

Here ∆{M/n} = ∆ by the freshness of m in the ∀R rule.
For the identity expansion criterion, recall that we attempt to reduce an applica-

tion of the identity rule at a complex type to the identity rule at the smaller types.
We have:

· ; ∀n:τ.A ` ∀n:τ.A
id∀n:τ.A −→E

m:τ ` m : τ
hyp

m:τ ; A{m/n} ` A{m/n}
idA{m/n}

m:τ ; ∀n:τ.A ` A{m/n}
∀L

· ; ∀n:τ.A ` ∀n:τ.A
∀R

We see that for identity expansion to make sense we need some sort of identity for
term variables and types. We assume a hypothesis principle for the external typing
judgments of terms. Usually, this is simply an inference rule, but because this typing
judgment is external to linear logic, we do not want to fix it as a rule.

Hypothesis. m:τ ` m : τ for any variable m and type τ
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In order to generalize the identity rule from the sequent calculus, for the arbitrary
hypotheses Ψ to appear in the rule, we must be able to weaken any judgment with
new typing assumptions m:τ , because they are not necessarily used. We apply this
principle as necessary without mention.

Weakening. If Ψ ; ∆ ` C then Ψ,m:τ ; ∆ ` C.

Here we suppose that m is fresh, not already declared in Ψ, so that no variable
is declared more than once in a judgment. The term typing judgment itself must
also have internal substitution and weakening principles for this discussion to be
consistent.

5.3 Existential Quantification

Existential quantification ∃n:τ.A can be considered dual to ∀n:τ.A. In order to prove
∃n:τ.A, we have to supply some term M of the correct type.

Ψ `M : τ Ψ ; ∆ ` A{M/n}
Ψ ; ∆ ` ∃n:τ.A

∃R

In order to use it, we have to suppose we have some new parameter m:τ .

Ψ,m:τ ; ∆, A{m/n} ` C
Ψ ; ∆,∃n:τ.A ` C ∃L

As usual we choose m fresh so that it does not appear in ∆, A, and C.

5.3.1 Example: Sandwich(x)

For an example of how we parametrize how we use quantifiers, let’s revisit the sandwich
rule of inference from 3.4:

money ` reuben money ` BLT

money ` reuben N BLT
sandwich

Let’s complicate the transaction a little. Let Ψ be a list of our preferences:

Ψ := sandwich preference : sandwich style, pizza preference : pizza style, . . .

then with money we may have this sandwich:

Ψ ` sandwich preference : sandwich style Ψ ; money ` sandwich(sandwich preference)

Ψ ; money ` ∃x:sandwich style.sandwich(x)
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5.4 Term Passing

We will show that with the Curry-Howard interpretation the quantified linear propo-
sitions will be the passing of basic data (terms), rather than channels. The universal
quantifier, the “for all” quantifier, corresponds to data input, while the existential
quantifier represents data output. The result is somewhat reminiscent of the applied
π-calculus Abadi & Fournet (2001).

All the sequent judgments have been generalized by adding new hypotheses within
the context Ψ, assigning types to term variables, written as

Ψ ; ∆ ` P :: x : A

The hypotheses Ψ are propagated to all premises in all inference rules we have pre-
sented thus far. We may freely do this by the assumptions we placed on the types
and inhabiting terms of the judgment Ψ ` M : τ . For example, the identity and cut
rules are now

Ψ ; x:A ` [x↔ z] :: z : A
idA

Ψ ; ∆ ` P :: x : A Ψ ; ∆′, x:A ` Q :: z : C

Ψ ; ∆,∆′ ` (νx)(P | Q) :: z : C
cutA

5.4.1 Term Input

We model the input of terms with universal quantification. To provide the ∀n:τ.A
service means to provide A once we get an m:τ . For the right rule the process term
offers to input a term and then behave as A with the term we input, say some m,
substituted throughout A.

Ψ,m:τ ; ∆ ` P{m/n} :: x : A{m/n}
Ψ ; ∆ ` x(n).P :: x : ∀n:τ.A

∀R

Just as with channel i/o, the channel on which we interact with the process changes
the service which it offers. Also the ∀L rule must therefore correspond to the process
expression which provides the output to match the ∀R rule, in order for the rules to
harmonize:

Ψ `M : τ Ψ ; ∆′, x:A{M/n} ` Q :: z : C

Ψ ; ∆′, x:∀n:τ.A ` x〈M〉.Q :: z : C
∀L

Just as in our discussion of quantifiers in the previous section, m must be chosen fresh
so that the context Ψ,m:τ makes sense in the ∀R rule, where we may always rename
to avoid conflict. We overload our substitution notation to allow for substitution of
names by terms, writing {M/y} for the capture-avoiding substitution of M for y in
A.



46 Chapter 5. Quantification

Reduction

Applying cut to the conclusions of right and left rules above we have:

Ψ ; ∆ ` x(n).P :: x : ∀n:τ.AΨ ; ∆′, x:∀n:τ.A ` x〈M〉.Q :: z : C

Ψ ; ∆,∆′ ` (νx)(x(n).P | x〈M〉.Q) :: z : C
cut∀

For the quantifiers to be logically consistent they must satisfy the substitution prin-
ciple so that we may substitute M for n in the premise of the ∀R, thereby justifying
the cut reduction. After that we obtain the following cut at the smaller types:

Ψ ; ∆ ` P{M/n} :: x : A{M/n}
Ψ ; ∆′, x:A{M/n} ` Q :: z : C

Ψ ; ∆,∆′ ` (νx)(P{M/n} | Q) :: z : C
cut

from which we see the usual i/o process reduction

(νx)(x(n).P | x〈M〉.Q) −→ (νx)(P{M/n} | Q)

In other words, we may pass terms of some functional language in the π-calculus, in
addition to passing names of channels as usual.

5.4.2 Term Output

A channel x : ∃y:τ.A should offer the service symmetric to the term input service.
Term output along x means to offer to output a term M of type τ along x and then
offer A{M/y}. Again, this is dual to term input with type ∀y:τ.A.

Ψ `M : τ Ψ; ∆ ` P :: x : A{M/n}
Ψ; ∆ ` x〈M〉.P :: x : ∃n:τ.A

∃R

Ψ,m:τ ; ∆′, x:A{m/n} ` Q{m/n} :: z : C

Ψ; ∆′, x:∃n:τ.A ` x(n).Q :: z : C
∃L

Applying cut to the conclusions of these two rules yields:

Ψ; ∆ ` x〈M〉.P :: x : ∃n:τ.AΨ; ∆′, x:∃n:τ.A ` x(n).Q :: z : C

Ψ; ∆,∆′ ` (νx)(x〈M〉.P | x〈n〉.Q) :: z : C
cut

which, appealing to the substitution property as before in the premise of ∃L, reduces
to the same communication via terms as with the universal quantifier pair (modulo
structural congruences in the π-calculus).

(νx)(x〈M〉.P | x〈n〉.Q) −→ (νx)(P | Q{M/n})
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5.5 Taking Stock

We now add quantification to our session types and term input/output to our pro-
cesses:

Session Types A,B,C ::= A( B input channel of type A
and continue as B

| A⊗B output a fresh channel of type A
and continue as B

| 1 terminate

| N
{
lj : Aj

}
offer a choice between lj

and continue as Aj
| ⊕

{
lj : Aj

}
provide one of the lj

and continue as Aj
| τ ⊃ A input a term of type τ

and continue as A
| τ ∧ A output a term of type τ

and continue as A
Terms M,N ::= M N | (M,N) | . . . (basic data constructors)
Processes P,Q ::= x〈M〉.P term output

| x (y) .P input
| (νy)x〈y〉.P bound output
| (νy) .P name restriction
| P | Q parallel composition

| x.case
(
lj ⇒ Pj

)
branching

| x.li;P selection
| [x↔ y] forwarding
| 0 termination





Conclusion

We have explored how session-typed process terms correspond to the inference rules
for connectives in linear logic.

In Chapter 2 we gave the specification for a synchronous π-calculus which gave
us a means to naturally describe concurrent programs. In Chapter 3 we introduced
linear logic, the logic of resources, in which truth is consumed to make inferences.
We then demonstrated that the session-typed calculus we presented was in one-to-
one correspondence with linear logic. For example cut reduction, the computational
workhorse of linear logic, corresponded to communication in the form of process term
reductions. The harmony critera for our logic corresponded to type preservation for
our process terms.

This correspondence is interesting in its own right. That a process calculus is
isomorphic to some kind of logic means that process terms are simply proofs of some
logical proposition. The isomorphism also means that global theorems about linear
logic hold for our process terms, in fact Toninho et al. (2014) use the correspondence
to guarantee that the process calculus is free from deadlock by using nondivergence
theorems from linear logic.

The proliferation of system components such as objects-stores, GPS services, rela-
tional databases, load balancers, and the plentiful variety of other services has made
concurrency support almost required for a programming language. Modern databases
such as Riak, programmed in Erlang, or Doozer and etcd, programmed in GoLang,
take advantage of concurrency primitives. The programmers who make these sys-
tems take advantage of distributed systems research to make consensus guarantees
about their database protocols but the concurrency issues in the system code can
still be difficult to find and pin down. If we could augment a concurrent program-
ming language system to include formal specifcation and verification components in
the form of a session type inference engine then we could provide sanity checks for
network programming, similar to the sanity checks given by the type systems in ML
and Haskell.
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